Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep.
نویسندگان
چکیده
Transection, lesion and unit recording studies have localized rapid eye movement (REM) sleep mechanisms to the pons. Recent work has emphasized the role of pontine cholinergic cells, especially those of the pedunculopontine tegmentum (PPT). The present study differentiated REM sleep deficits associated with lesions of the PPT from other pontine regions implicated in REM sleep generation, including those with predominantly cholinergic vs non-cholinergic cells. Twelve hour polygraphic recordings were obtained in 18 cats before and 1-2 weeks after bilateral electrolytic or radio frequency lesions of either: (1) PPT, which contains the dorsolateral pontine cholinergic cell column; (2) laterodorsal tegmental nucleus (LDT), which contains the dorsomedial pontine cholinergic cell column; (3) locus ceruleus (LC), which contains mostly noradrenergic cells; or (4) subceruleus (LC alpha, peri-LC alpha and the lateral tegmental field), which also contains predominantly noncholinergic cells. There were three main findings: (i) Only lesions of PPT and subceruleus significantly affected REM sleep time. These lesions produced comparable reductions in REM sleep time but influenced REM sleep components quite differently: (ii) PPT lesions, estimated to damage 90 +/- 4% of cholinergic cells, reduced the number of REM sleep entrances and phasic events, including ponto-geniculooccipital (PGO) spikes and rapid eye movements (REMs), but did not prevent complete atonia during REM sleep: (iii) Subceruleus lesions eliminated atonia during REM sleep. Mobility appeared to arouse the cat prematurely from REM sleep and may explain the brief duration of REM sleep epochs seen exclusively in this group. Despite the reduced amount of REM sleep, the total number of PGO spikes and REM sleep entrances increased over baseline values. Collectively, the results distinguish pontine loci regulating phasic events vs atonia. PPT lesions reduced phasic events, whereas subceruleus lesions created REM sleep without atonia. Severe REM sleep deficits after large pontine lesions, including PPT and subceruleus, might be explained by simultaneous production of both REM sleep syndromes. However, extensive loss of ACh neurons in the PPT does not disrupt REM sleep atonia.
منابع مشابه
THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation
THE RAPID EYE MOVEMENT (REM) STAGE OF SLEEP IS CHARACTERIZED BY CORTICAL AND HIPPOCAMPAL ACTIVATION, RAPID EYE MOVEMENTS, SILENCING OF brainstem aminergic neurons, and postural atonia.1 Cholinergic activation plays an important role in the generation of REM sleep, since pontine microinjections of cholinergic agonists into the pontine reticular formation trigger or enhance a rapid eye movements ...
متن کاملExcitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
Considerable evidence suggests that brain stem pedunculopontine tegmentum (PPT) cholinergic cells are critically involved in the normal regulation of wakefulness and rapid eye movement (REM) sleep. However, much of this evidence comes from indirect studies. Thus, although involvement of PPT cholinergic neurons has been suggested by numerous investigations, the excitation of PPT cholinergic neur...
متن کاملOptogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.
Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in...
متن کاملBrainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.
In this mini review, we summarize our findings regarding the brainstem neurons responsible for the postural, masseter, or pharyngeal muscle atonia observed during paradoxical sleep (PS) in freely moving cats. Both the pons and medulla contain neurons showing tonic activation selective to PS and atonia, referred to as PS/atonia-on-neurons. The PS/atonia-on neurons, characterized by their most sl...
متن کاملMechanisms of seizure suppression during rapid-eye-movement (REM) sleep in cats.
REM sleep is the most antiepileptic state in the sleep-wake cycle for human generalized epilepsy, yet the neural mechanism is unknown. This study verified the antiepileptic properties of REM sleep in feline generalized epilepsy and also isolated the responsible factors. Conclusions are based on 20 cats evaluated for generalized EEG and motor seizure susceptibility before and after dissociation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 571 1 شماره
صفحات -
تاریخ انتشار 1992